

An Overview on IEEE 802.11 WLAN and Task Groups

Dr. Bakhtiyari, Ali Abbasi ECE, University of Sistan and Baluchestan

Contents

fppt.com

- Who is IEEE?
- WLANs and Data Communication Basics
- IEEE 802.11 WLAN Standard
- MAC Sub-layer in 802.11
- Physical layer in 802.11
- Task Groups
- Topologies
- Some Challenges in Wireless Data Communications

Institute of Electrical and Electronics Engineers IEEE

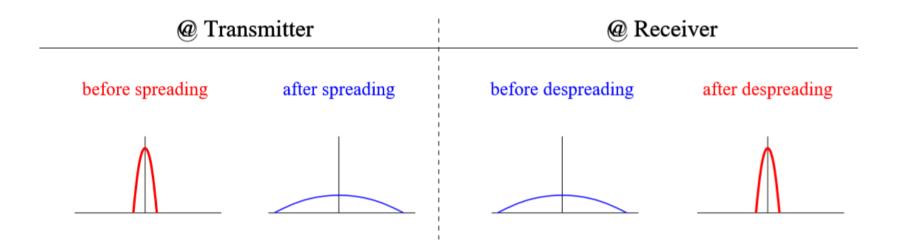
- Known as "IEEE".
- The world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.
- Consists of different societies and councils.
- Formed in 1963 from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers.
- Corporate office in New York City and operations center in Piscataway, New Jersey.

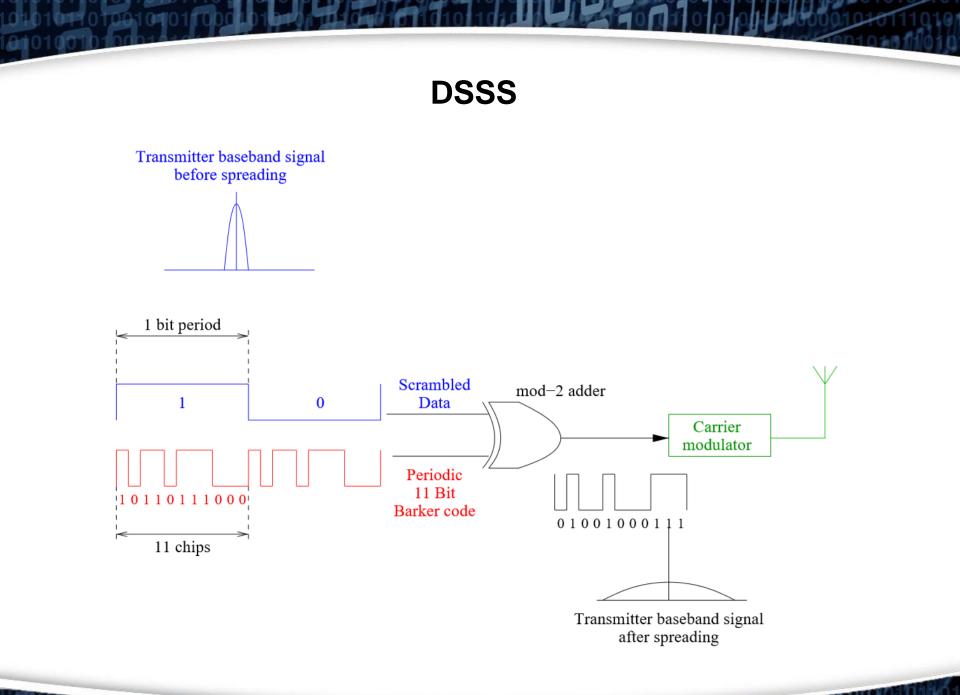
WLANs

fppt.com

- WLAN stands for "Wireless Local Area Network"
- An alternative for wired networks
- Wireless computing is rapidly emerging
- It is Hard to wire some buildings
- Users do not want to being tethered off of a wired network

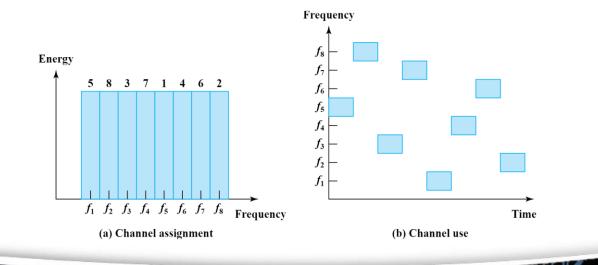
Basics


fppt.com

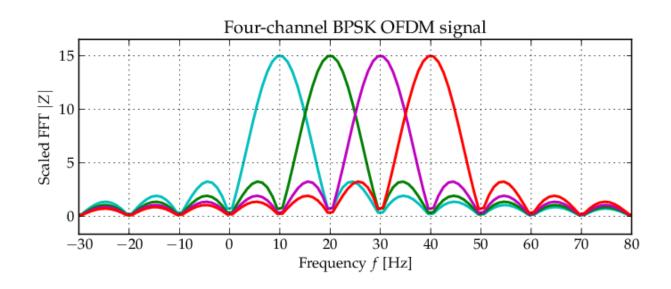

- Direct-sequence Spread Spectrum (DSSS)
- Frequency-hopping Spread Spectrum (FHSS)
- Orthogonal Frequency-division Multiplexing (OFDM)

DSSS

- A spread-spectrum modulation technique primarily used to reduce overall signal interference.
- Single code (11-chips)
- makes the transmitted signal wider in bandwidth than the information bandwidth.



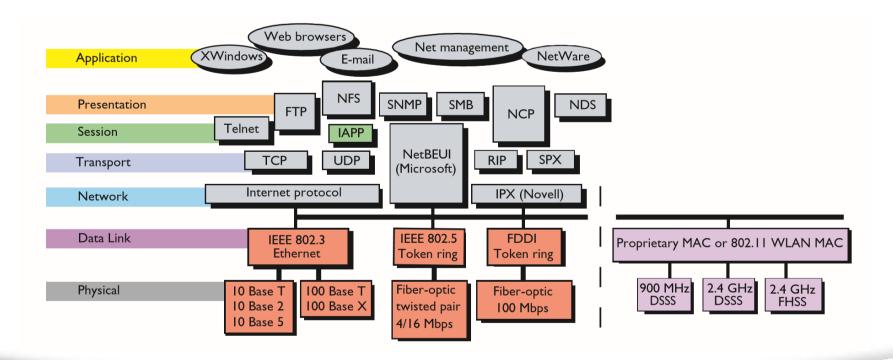
100101011


FHSS

- Rapidly changing the carrier frequency among many distinct frequencies occupying a large spectral band.
- The changes are controlled by a code known to both transmitter and receiver.
- Used to avoid interference, to prevent eavesdropping, and to enable codedivision multiple access (CDMA) communications.

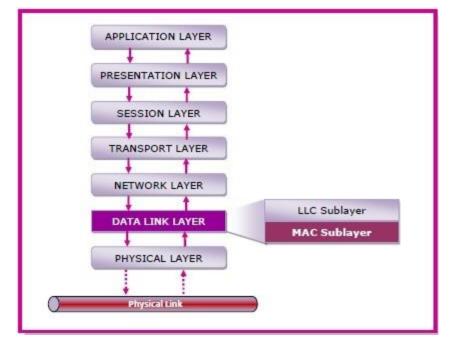
OFDM

- Work was done in 1960s, and a patent was issued in 1970.
- High-rate data is divided into several lower rate binary signals.
- Each low-rate signal modulates a different sub-carrier.
- Sub-carrier sets are orthogonal.


IEEE 802.11 WLAN Standard

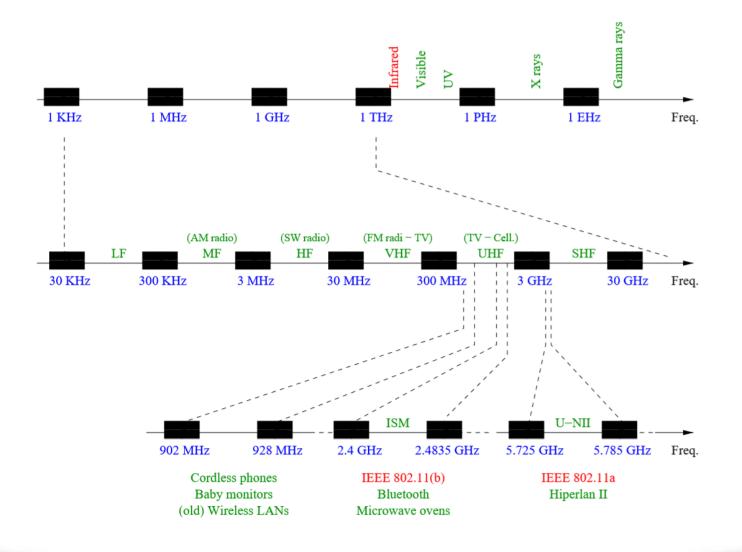
- Part of the IEEE 802
- The world's most widely used standard in CN
- Accepted by ISO and ANSI
- Specifies the set of MAC and PHY protocols for implementing WLANs

802 Overview and architecture	802.1 Management		Data link layer LLC sublayer							
		802.3	802.5		80.	2.11				
		802.3 MAC	802.5 MAC		MAC sublayer					
		802.3 PHY	802.5 PHY	802.11 FHSS PHY	802.11 DSSS PHY	802.11a OFDM PHY	802.11b HR/DSSS PHY	Physical layer		


IEEE 802.11 Architecture

- Follows the common ISO and OSI models
- It causes change in MAC and PHY layers
- Due to being expandable \rightarrow Same architecture in upper layers

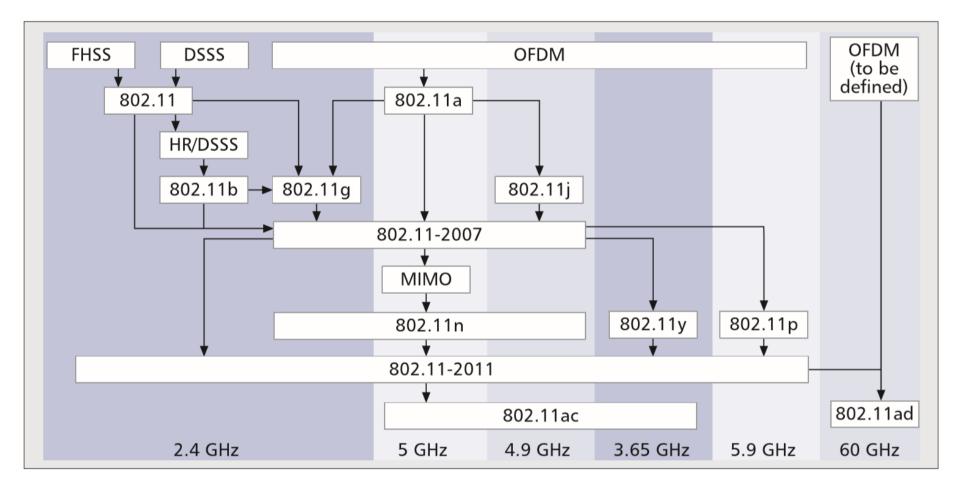
MAC Sub-layer in 802.11


- A sublayer of the data link layer
- Provides an abstraction of the physical layer to the LLC and upper layers of the OSI network.
- Responsible for frame formatting, fragmentation and reassembly, channel allocation procedure, PDU addressing, and error checking.

IEEE 802.11 MAC Sub-layer Frame

	802.11 MAC header											
	Frame Control		Duration ID	n Address 1	1 1		ess	Sequence Control	Address 4	Network Data		FCS
2 By		es 2	Bytes	6 Bytes	6 Bytes	6 By	rtes	2 Bytes	6 Bytes	0 to 2	312 Byte	es 4 Bytes
	otocol rsion	Тур	be	Subtype	To DS	From DS	Mor Fra	I Retry	Power Mgmt	More Data	WEP	Order
2 bits		2 b	its	4 bits	1 bit	1 bit	1 bi	it 1 bit	1 bit	1 bit	1 bit	1 bit

The Electromagnetic Spectrum Frequency Allocation


Physical Layer in 802.11

- First standard developed in 1997 (known as 802.11-1997)
- Specifies PHY layer including spread spectrum technique, frequency band, bandwidth, and ...

fppt.com

- New applications require new implementations
- Which cause to develop task groups

The 802.11 PHY layer

00101011

fppt.com

802.11 - 1997

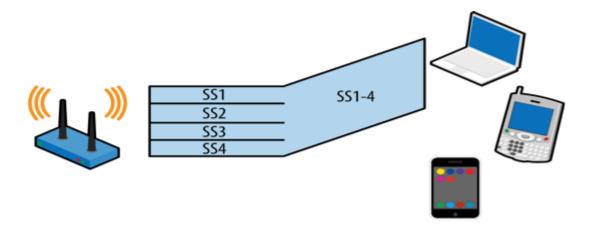
- First implementation of PHY layer
- 2.4 GHz frequency band
- 2 Mb maximum data transmission rate
- An approximate range of 100 meters outdoor and 20 meters indoor
- FHSS and DSSS techniques used

802.11b

- Introduced in 1999
- First widely used task group
- Still used 2.4 GHz band to reduce costs
- Only uses DSSS technique
- A maximum of 11 Mb/s rate
- About 35 meters for indoor and 140 meters for outdoor
- Microwave ovens also use 2.4 GHz frequency band

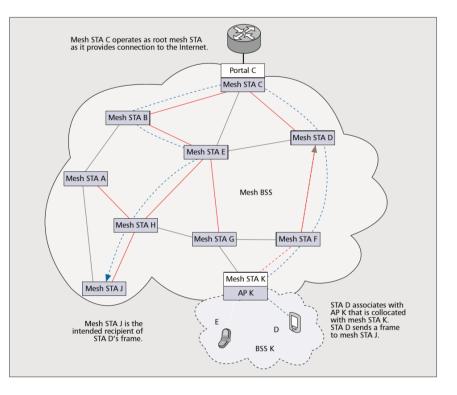
802.11a

fppt.com

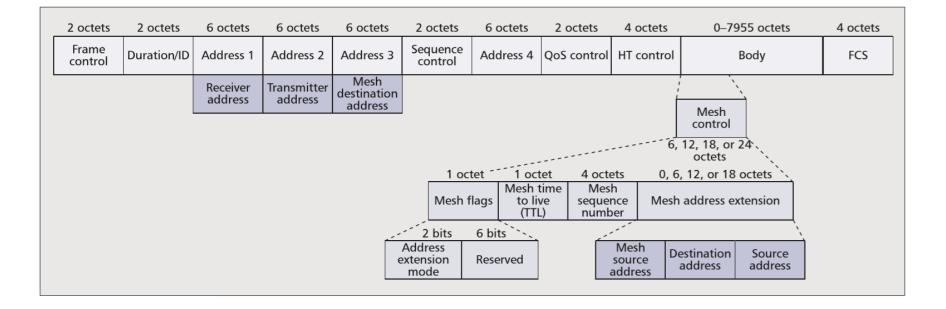

- Also introduced in 1999
- Frequency band changed to 5 GHz to reduce Interferences
- High costs Low range
- OFDM modulation used
- Up to 54 Mb/s transmission rate

802.11g

- An extension to 802.11b group
- Developed in 2003
- A high transmission rate of 54 Mb/s, This time in 2.4 GHz


802.11n

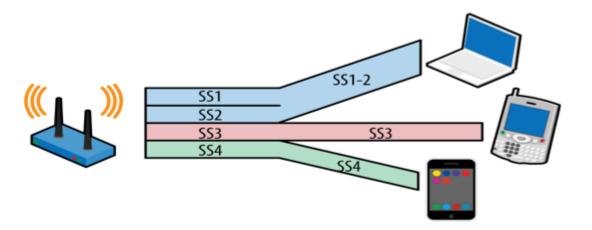
- One of the most important releases
- Working in both 2.4 and 5 GHz
- 540 Mb/s transmission rate
- MIMO technology introduced
- Supports up to 4 antennas



802.11s

- Single-hop communication cause a limited coverage
- Mesh networks introduced to communicate in multi-hop

The 802.11s MAC frame



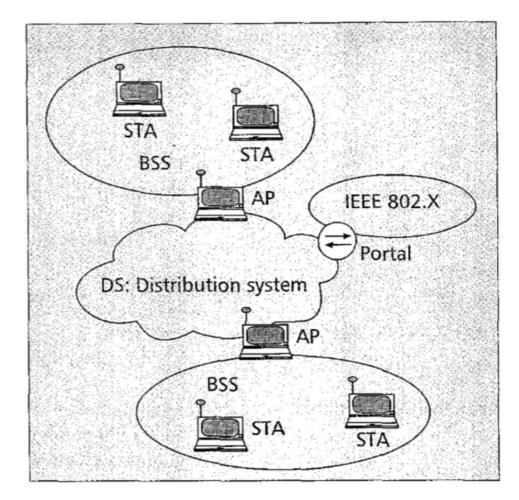
802.11ac

- Developed in 2012 for a better throughput
- Still one of the popular task groups
- Up to 6 Gb/s
- 5 GHz frequency band with 160 MHz bandwidth

802.11ax

- First task group with support of multi-user MIMO
- 20 MHz bandwidth in 2.4, 5, and 6 GHz
- Better power consumption
- Is not currently widely supported
- A good choice for IOT

802.11ad


fppt.com

- A 60 GHz task group
- High frequency band \rightarrow Higher speed, Lower range
- 54 times wider channels than group 'n'
- 6.7 Gb/s transmission rate

Topologies

- Access Point (Infrastructural)
- Ad Hoc

Access Point Topology

fppt.com

28/37

Ad Hoc Topology

- Users want the same performance as the wired counterpart
- Using unguided mediums instead of guided ones make new problems
- Some common challenges:
 - Frequency allocation
 - Interference
 - Reliability
 - Power Consumption
 - Human safety
 - Throughput
 - Security

Frequency Allocation

- Countries manage the rules of allocation
- USA accepts ISM band for Wi-Fi networks
- ISM stand for Industrial, Scientific, and Medical

Interference

- Occurs when transmitting simultaneous in the same frequency
- Signal fading
- Reduces reliability
- IEEE 802.11 uses CSMA/CA for confrontation

Reliability

- Bit Error Rate (BER)
- Ways to reduce BER: FEC and ARQ
- E.g. Order of 10^-2 for transmitting voice packets in 802.11

Power Consumption

- Portable working stations use battery
- Limited battery capacity \rightarrow Consumption needs to be reduced

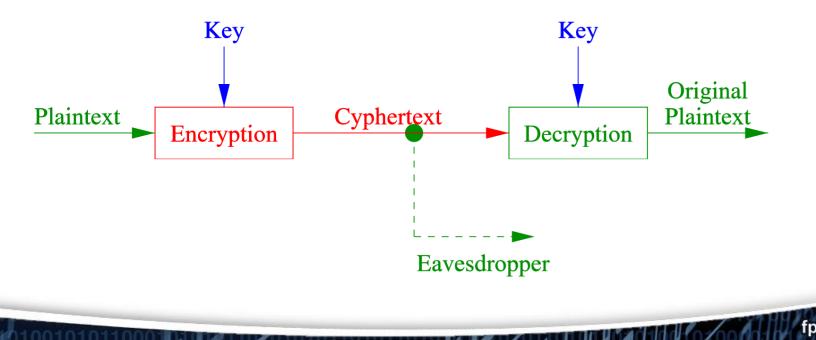
fppt.com

- Reducing power consumption \rightarrow Decrease in performance

Human Safety

- Power can be increased to improve coverage and performance
- Power increasing is not recommended
- Researches are still ongoing

Throughput


- Shared mediums
- A minimum of 1 Mb/s transmission rate in any situation with 802.11

fppt.com

Spread spectrum and channel division

Security

- It is more complicated in non-physical mediums
- Packet encryption
- 802.11 uses WEP method \rightarrow RC4 symmetric key encryption algorithm

Any Question?!

fppt.com

References

- Crow, B.P., et al., IEEE 802.11 wireless local area networks. 1997. 35(9): p. 116-126.
- Kurose, J.F. and K.W. Ross, Computer networking : a top-down approach. 6th ed. 2013: Addison-Wesley. 513-541.
- Harrison, T.J.J.I.P.V., IEEE Project 802: Local Area Network Standard–A March 1982 Status Report. 1982. 15(3): p. 13-24.
- Law, D., et al., Evolution of Ethernet standards in the IEEE 802.3 working group. 2013. 51(8): p. 88-96.
- Hiertz, G.R., et al., The IEEE 802.11 universe. 2010. 48(1): p. 62-70.
- Kapp, S.J.I.I.C., 802.11: leaving the wire behind. 2002. 6(1): p. 82-85.
- Hiertz, G.R., et al., IEEE 802.11 s: the WLAN mesh standard. 2010. 17(1): p. 104-111.
- Perahia, E.J.I.C.M., IEEE 802.11 n development: History, process, and technology. 2008. 46(7): p. 48-55.
- Verma, L., M. Fakharzadeh, and S.J.I.W.C. Choi, Wifi on steroids: 802.11 ac and 802.11 ad. 2013. 20(6): p. 30-35.

- Bellalta, B.J.I.W.C., IEEE 802.11 ax: High-efficiency WLANs. 2016. 23(1): p. 38-46.
- Wells, S., 802.11 WLAN Security—Choose Wisely!

