
Ali Abbasi

Dr. Keikha

An Overview on Motorola 68000

ECE of University of Sistan & Baluchestan

http://www.free-powerpoint-templates-design.com/free-powerpoint-templates-design

Outline

❑ Motorola 68 Generation

❑ Overview

❑ Manufacturers

❑ Block Diagram

❑ Pins and Signals

❑ Registers

❑ Addressing Modes

❑ Instruction Set Architecture

❑ Exceptions

❑ References

Genealogy

Related Family
68008

➢ 8-bit data bus
➢Up to 16.67 MHz
➢ 4 MB RAM

Next Generation
68010

➢ 32-bit CPU
➢ 16-bit data bus
➢ Up to 16 MHz
➢ 16 MB RAM
➢ Virtual memory supprt
➢ No I/O ports

68000

➢ 32-bit CPU
➢ 16-bit data bus
➢ Up to 20 MHz
➢ 16 MB RAM
➢ No I/O ports

Previous Generation
6800

➢ 8-bit microprocessor
➢Up to 2 MHz
➢ 64 KB RAM
➢No I/O ports

Specifications

68-pin LCC

68-pin PGA 64-pin DIP
68000

➢ 32-bit CPU
➢ 16-bit data bus
➢ Up to 20 MHz
➢ 16 MB RAM
➢ No I/O ports

Specifications

Motorola 68K (MC68000)

▪ Released in 1979

▪ The first member of 680x0 line of microprocessors

▪ HMOS technology

▪ 14 addressing mode

▪ 7 interrupt levels

▪ Synchronous and asynchronous data transfers

▪ Competed against the Intel 8086 and Intel 80286A CISC microprocessor

▪ Much more flexible than other CPU families (z80, 80x86, z80000, etc.)

▪ An excellent computer for running C code

Specifications

Cheaper 68K (68EC000)

▪ Designed for embedded controller applications

▪ 8-bit/16-bit Data bus

▪ 8 MHz/16 MHz Configurations

▪ FPU was not available (Co-Processor: MC68881/2)

Specifications

Computers:

▪ Apple Lisa 2 (January, 1983)

▪ Apple Macintosh 128K (January, 1983)

▪ Atari 520STfm (January, 1985)

▪ Commodore Amiga 500 (July, 1985)

▪ Commodore Amiga 1000 (April, 1987)

▪ Thousands of printers, automotive engine controllers, and medical manufacturers

Have you ever heard…

“In the Sega Saturn, the 68EC000 was used as the sound processor.
Also a version of Motorola 68000 manufactured by Hitachi, the FD109,
was used in various Sega arcade systems.”

Manufacturers

▪ Apple (8 MHz 64-pin side-brazed ceramic DIP)

▪ Hitachi (6 MHz 64-pin side-brazed ceramic DIP)

▪ Signetics (4 MHz 64-pin side-brazed ceramic DIP)

▪ Rockwell (8 MHz 64-pin side-brazed ceramic DIP)

▪ Mostek (8 MHz 64-pin plastic DIP)

▪ ST (10 MHz 64-pin plastic DIP)

▪ Thomson (16 MHz 68-pin plastic LCC)

▪ Toshiba (DIP, Shrink DIP, Ceramic PGA, PLCC, Plastic QFP)

Block Diagram

Pins and Signals

1. Address Bus (A23-A1)

Pins and Signals

1. Address Bus (A23-A1)

2. Data Bus (D15-D0)

Pins and Signals

1. Address Bus (A23-A1)

2. Data Bus (D15-D0)

3. Asynchronous Bus Control

▪ Address Strobe (~AS)

▪ Read/Write (R/~W)

▪ Upper and Lower Data Strobes
(~UDS, ~LDS)

▪ Data Transfer Acknowledge
(~DTACK)

Pins and Signals

1. Address Bus (A23-A1)

2. Data Bus (D15-D0)

3. Asynchronous Bus Control

▪ Address Strobe (~AS)

▪ Read/Write (R/~W)

▪ Upper and Lower Data Strobes
(~UDS, ~LDS)

▪ Data Transfer Acknowledge
(~DTACK)

4. Bus Arbitration Control

▪ Bus Request (~BR)

▪ Bus Grant (~BG)

▪ Bus Grant Acknowledge
(~BGACK)

Pins and Signals

5. Interrupt Control (IPL0-IPL2)

▪ indicate the encoded priority
level of the device requesting
an interrupt

▪ Level seven has the highest
priority

Pins and Signals

5. Interrupt Control (IPL0-IPL2)

▪ indicate the encoded priority
level of the device requesting
an interrupt

▪ Level seven has the highest
priority

6. System Control

▪ Bus Error (~BERR)

▪ Reset (~RESET)

▪ Halt (~HALT)

Pins and Signals

5. Interrupt Control (IPL0-IPL2)

▪ indicate the encoded priority
level of the device requesting
an interrupt

▪ Level seven has the highest
priority

6. System Control

▪ Bus Error (~BERR)

▪ Reset (~RESET)

▪ Halt (~HALT)

7. M6800 Peripheral Control

▪ Enable (E)

▪ Valid Peripheral Address (~VPA)

▪ Valid Memory Address (~VMA)

Pins and Signals

8. Processor Function Codes (FC0-FC2)

Pins and Signals

8. Processor Function Codes (FC0-FC2)

9. Clock (CLK)

Pins and Signals

8. Processor Function Codes (FC0-FC2)

9. Clock (CLK)

10. Power Supply (VCC and GND)

Registers

Name Label Number Size Function

Registers

Name Label Number Size Function

Data registers D0-D7 x8 32-bit General purpose registers.
Stores 8/16/32 bit data

Registers

Name Label Number Size Function

Data registers D0-D7 x8 32-bit General purpose registers.
Stores 8/16/32 bit data

Address registers A0-A6 x7 32-bit Stores 16/32 bit pointers
(addresses of data)

Registers

Name Label Number Size Function

Data registers D0-D7 x8 32-bit General purpose registers.
Stores 8/16/32 bit data

Address registers A0-A6 x7 32-bit Stores 16/32 bit pointers
(addresses of data)

Stack pointer SP x2 32-bit Store a pointer to a group of
data know as stack. Also known

as A7.

Registers

Name Label Number Size Function

Data registers D0-D7 x8 32-bit General purpose registers.
Stores 8/16/32 bit data

Address registers A0-A6 x7 32-bit Stores 16/32 bit pointers
(addresses of data)

Stack pointer SP x2 32-bit Store a pointer to a group of
data know as stack. Also known

as A7.

Program counter PC x1 32-bit Contains the address of next
instruction to fetch and execute

Registers

Name Label Number Size Function

Data registers D0-D7 x8 32-bit General purpose registers.
Stores 8/16/32 bit data

Address registers A0-A6 x7 32-bit Stores 16/32 bit pointers
(addresses of data)

Stack pointer SP x2 32-bit Store a pointer to a group of
data know as stack. Also known

as A7.

Program counter PC x1 32-bit Contains the address of next
instruction to fetch and execute

Status register SR x1 16-bit Contains information on the
results of the last instruction

Registers

Status register:

▪ Only the low-order byte of the SR, which is called the CCR (Condition Code Register), can

be accessed by the user.

▪ the so-called System Byte, can be seen and accessed only by the Operating System during

special emergency cases

▪ The CCR allows conditional behavior

▪ The Control Unit often bases its decisions on the contents of the CCR

▪ Almost every instruction that is executed by the CPU forces an update on the value of one

or more CCR bits

Registers

Setup of the Control/Status Register:

Addressing Modes

Addressing Modes

1. Direct addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

6. Register indirect addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

6. Register indirect addressing

7. Indexed addressing

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

6. Register indirect addressing

7. Indexed addressing

8. Auto increment mode

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

6. Register indirect addressing

7. Indexed addressing

8. Auto increment mode

9. Auto decrement mode

Addressing Modes

1. Direct addressing

2. Indirect addressing

3. Immediate addressing

4. Relative addressing

5. Register direct addressing

6. Register indirect addressing

7. Indexed addressing

8. Auto increment mode

9. Auto decrement mode

10. Inherent addressing

Instruction Set Architecture

Data Types:

▪ Binary Digit (b)

▪ 1 bit stores either binary 0 or 1

▪ Binary Coded Decimal (BCD)

▪ 4 bits that represents 0 to 9

▪ Byte (B)

▪ 8 bits that is processed as one unit

▪ Word (W)

▪ 16 bits that is processed as one unit

▪ Long word (L)

▪ 32 bits that is processed as one unit

Instruction Set Architecture

Instructions Categories:

Motorola 68000 instruction set is consist of 56 instructions in 8 different

categories:

1. Data transfer

2. Arithmetic

3. Logic

4. Shifts and rotates

5. Bit manipulation

6. BCD

7. Program control

8. System control

Instruction Set Architecture

Data transfer instructions examples:

Instruction Operation

MOVE <ea>,<e> [destination] ← [source]

MOVEA <ea>,An [An] ← [source]

Arithmetic instructions examples:

Instruction Operation

NEG <ea> [destination] ← 0 - [destination]

ADDI #<data>,<ea> [destination] ← <literal> + [destination]

MULU <ea>,Dn [destination] ← [destination] * [source]

Instruction Set Architecture

Logic instructions examples:

Instruction Operation

NOT <ea> [destination] ← [destination]

ANDI #<data>,CCR [CCR] ← <data>.[CCR]

Shift & rotate instructions examples:

Instruction Operation

LSR #<data>,Dy [destination] ← [destination] shifted by <count>

ROL #<data>,Dy [destination] ← [destination] rotated by <count>

Instruction Set Architecture

Bit manipulation instructions examples:

Instruction Operation

BTST #<data>,<ea> [Z] ← <bit number> OF [destination]

CLR <ea> [destination] ← 0

BCD instructions examples:

Instruction Operation

ABCD Dy,Dx [destination]10 ← [source]10 + [destination]10 + [X]

NBCD <ea> [destination]10 ← 0 − [destination]10 - [X]

SBCD Dy,Dx [destination]10 ← [destination]10 - [source]10 - [X]

Instruction Set Architecture

Program control instructions examples:

Instruction Operation

Bcc <label> If cc = 1 THEN [PC] ← [PC] + d

JMP <ea> [PC] ← destination

System control instructions examples:

Instruction Operation

EORI #<data>,CCR [CCR] ← <literal> ⊕ [CCR]

MOVE <ea>,SR IF [S] = 1
THEN [SR] ← [source]

ELSE TRAP

A complete list of instructions

An example of Motorola 68K program

main
move.l #str,a0 ;load A0 register with address of string
movem.l a0,-(sp) ;push address of string on stack
bsr _puts ;branch to subroutine "_puts"
bra main ;keep looping!

org $2000
str dc.b 'Hello, World!',10,0

org $3000

_puts ;Like C/C++ puts function (LF added)
****** ;returns nothing

;save regs
movem.l d0-d1/d7/a0/a5/a6,-(sp)
move.l 28(sp),a5 ;get address of string from stack

;find end of string
move.l a5,a6

1$ move.b (a6)+,d0 ;get next char of string
cmp.b #0,d0 ;is it a null?
beq 2$;yes, found end of string
jmp 1$;no, so keep looping

2$ subq #1,a6 ;don't print the null
move.w #227,d7 ;call out1cr trap
trap #14

;retore regs & return
movem.l (sp)+,d0-d1/d7/a0/a5/a6
rts

END ;end _puts

Another example of Motorola 68K program

; strtolower:
; Copy a null-terminated ASCII string, converting
; all alphabetic characters to lower case.
;
; Entry parameters:
; (SP+0): Source string address
; (SP+4): Target string address

org $00100000 ;Start at 00100000
Strtolower public

link a6,#0 ;Set up stack frame
movea 8(a6),a0 ;A0 = src, from stack
movea 12(a6),a1 ;A1 = dst, from stack

Loop move.b (a0)+,d0 ;Load D0 from (src), incr src
cmpi #'A',d0 ;If D0 < 'A',
blo copy ;skip
cmpi #'Z',d0 ;If D0 > 'Z',
bhi copy ;skip
addi #'a'-'A',d0 ;D0 = lowercase(D0)

copy move.b d0,(a1)+ ;Store D0 to (dst), incr dst
bne loop ;Repeat while D0 <> NUL
unlk a6 ;Restore stack frame
rts ;Return
end

Motorola 68000
Exceptions Vector Table

Guys!

Do you really love 68000?

I have to tell you something…

Further information

Watch on YouTube:

Motorola 68000 Oral History Panel

References

(Kim , Muhammad Mun’im Ahmad Zabidi , Stritter and Gunter 1979, Starnes 1983, Clements 1992, Dávila 2000, Polsson 2006,
Shvets 2018)

Clements, A. (1992). Microprocessor systems design: 68000 hardware, software, and interfacing, PWS Publishing Co.

Dávila, O. G. (2000). Assembly Language Macros

Kim, C. EECE416 Microcomputer Fundamental 68000 Processor, Howard University.

Muhammad Mun’im Ahmad Zabidi SEE 3223 Microprocessor Systems - 68000 Architecture. Kuala Lumpur, Malaysia,
University Technology Malaysia: 6, 9, 11, 12, 17, 18, 21.

Polsson, K. J. O. D. (2006). "Chronology of Microprocessors."

Shvets, G. (2018). "Motorola 68000 microprocessor family." from http://www.cpu-world.com/CPUs/68000/.

Starnes, T. W. J. B. (1983). "Design philosophy behind Motorola's MC 68000. Part I: A 16-bit processor with multiple 32-bit
registers." 8(4): 70-92.

Stritter, E. and T. J. C. Gunter (1979). "Microsystems a Microprocessor Architecture for a Changing World: The Motorola
68000." (2): 43-52.

Any Question?

Thanks for your kind attention!

